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Abstract

In this paper, we provide a decentralized pure exchange model, which includes each player’s
strategic decision-making about to which market the player should divide one’s own initial en-
dowment and how much the player also allocates it. We will define two concepts of equilibrium,
that is, the Walras equilibrium and the Nash-Walras equilibrium in the decentralized pure ex-
change economy. We will also prove the existence of the equilibrium and the coincidence
between the Walras equilibrium in the centralized economy and the Nash-Walras equilibrium
in some decentralized market. For three players who possess equal initial endowments, we will
provide numerical examples for six characteristic market structures.

1 Introduction

In this paper, we provide a decentralized pure exchange model, which includes each player’s strate-
gic decision-making about to which market the player should divide one’s own initial endowment
and how much the player also allocates it. These strategic selections of initial endowments are the
main feature and contribution of our coalitional model. In the numerical examples in Section 4,
the interesting results of our model will be shown. In the examples, we can recognize that our
models are simply computationally designed for complex situations.

Our concept of a ”decentralized” model includes a ”centralized” model of a single coalition, a
network model consisting of only two-player coalitions, and a coalitional market model consisting
of three or more player coalitions. The decision process of our model is one shot game. That is,
the equilibrium price and the initial endowment allocations may be decided simultaneously.

Some players may be strategic, other players may not be strategic about planning initial en-
dowment allocations in each market structure. On the other hand, each player is always a price
taker because we assume that the market mechanism is not directly controlled by small players.
However, each player can recognize the market mechanism itself in the long term. Each player can
also increase its utility by choosing the initial endowment allocation plan. That is, each player can
indirectly affect the equilibrium price. These are our settings.

Therefore, our aim is not the realization of the Walras equilibrium by the Nash equilibrium, for
example, Schmeidler [24], Ghosal and Polemarchakis [11], and so on, although we will introduce
both equilibrium concepts. As Ostroy and Starr [19] , one of the most famous articles on the
decentralized market model, told the story of the exchange market in their article, we also provide
a similar situation of the decentralized market.

As Shapley and Shubik [1] explain, in daily life, we mutually trade some goods with some
individuals in some markets. For example, a trader has two certain amounts of money. One is the
dollar. The other is the euro. In general, the currency market is decentralized without a central
authority, including interactions between individuals, groups, or coalitions. Each submarket will



decide the equilibrium exchange rate of the currency. In the decentralized market, there may
possibly be different exchange rates for currencies or goods; that is, different prices.

These diversities of combinations are revealed not only among individuals, but also among
groups. From the perspective of sociology, for example, Giddens and Sutton [12, Chapter 11:Strat-
ification and Class|, our circumstances are said to be constrained by not only economic structure,
but also cultural, religious, occupational, and other social structures. All consumers do not ex-
change at one specific stratification. The members of these groups are not necessarily exclusive.
In general, the boundaries between groups, classes, and stratification are vague.

We will formalize these complex situations as each player belongs to multiple coalitions simulta-
neously, which are not necessarily ”partitioned”. In other words, our model involves the situation
of coalitional structure in the meaning of cooperative game theory.

We assume that each player makes a decision in two phases. In the stage of initial endowment
plannings, the player will choose the amounts of initial endowment for each market that the player
is concerned about. The player will behave strategically under other players’ initial endowment,
forecasting the following adjustment of exchange to market equilibrium. In the stage of market
coordination, the player maximizes one’s utility given the prices of each market. After the process
of adjustment between demand and supply, a market equilibrium will be achieved. The player
must make a strategic decision until the other players reach strategic maximization. In the final
state, the economy may be the Nash equilibrium in the sense of strategy for initial endowment
allocations and the Walras equilibrium in the sense of market clearings.

In the literature on the decentralized economy, our model may be a slight variation regarding
the amounts of genuine articles, for example, Ostroy and Starr [19], Shapley and Shubik [25],
Rubinstein and Wolinsky [20], and so on. Our model may also extend a network model as a special
case, which occurs when all markets are doubleton, that is, {1,2},{2,3},{1,3},{3,4}, ... , etc.
Of course, we recognize the vast amount of articles about network models, and we can find a list
of profound literature, for example, Jackson [13] and [14], Sargent and Stachurski [23], or, as one
of the recent superior research efforts, Cassese and Pin [6], which address fairness in the pure
exchange economy within the network model. The goal of this article may not be to add a page
to the vast volume of these sophisticated papers, namely networking exchange models or network
formation models.

In the literature on equilibrium manipulation, our model may also be an extension of these
manipulation models. Manipulation models would suggest that changes in the allocation of initial
endowments can change the equilibrium points. In the model of Safra [21], which assumes differen-
tiable utility functions, and assumes that the market structure may consist of the whole coalition
and all singleton coalitions, for example, {1,2,3},{1},{2},{3}. The other equilibrium manipu-
lation model, Safra [22], also provides similar coalitional situations, where each player mutually
affects common submarkets. This is because the aim of their models is to reveal the effectiveness
and relationship between a market equilibrium and strategic allocations of initial endowment.

However, our purpose is another direction of research. We will suggest the importance of the
fact that the not only strategic allocation of initial endowment, but also diversities of the coalitional
combinations affect the equilibrium points.

From the aspect of the oligopolistic behavior of players in the Walras equilibrium, many fruitful
models and discussions have been made. For example, d’Aspremont et al. [7], Gabszewicz [10],
Dickson and Tonin [8], etc. In some of these papers, for example, a part of the players may be
oligopolistic, and the others may not affect the equilibrium price directly. The economies of these
models are the mixture of several explicit roles.

However, all players in our model may behave under the common role or the common decision
rule. The difference in the roles of the players may be implicitly generated by the market structure.
That is, with whom does the player communicate? Who trades with players? Who is a member
of the coalitions? A player may be a member of a single coalition. Another player may exchange



commodities in many trading groups. The linking or grouping style of the players is variable.

The plan of this article is as follows. The next section will introduce the definition of the market
structure and the decentralized pure exchange economy. We will also prove the relevant claims.
In Section 3, we will define two concepts of equilibrium, that is, the Walras equilibrium and the
Nash-Walras equilibrium in this decentralized pure exchange economy, as stated above. We will
prove the existence of both equilibria in any market structure. Theorem 5 shows the relationship
between the two equilibrium concepts.

The section 4 shows six numerical and interesting examples. The first is the case where each
player is not connected with anyone. The second is the case where two players are linked with each
other, and one of the two players can consume a part of the initial endowment without providing
it to the belonging market, that is, self-consumption. In the third case, the other player linked
with the player can also make self-consumption in addition to the second case. The fourth case
provides the usual equilibrium of the centralized economy. The fifth case is the situation where
one player is the "middleman.” In the sixth case, the economy is fully networked. All players may
link up with each other. That is, this network is a ”complete graph.” In the last section, we will
provide concluding remarks.

2 Definitions

2.1 The Market Structure

Let us define a market structure below. For our definition of the market structure, we have referred
to Malamud and Rostek [15], which sophisticatedly analyze decentralized markets of risky assets,
in contrast to our model, which treats multiple and non-risky goods.

N = {1,2,--- ,n} is the finite set of players(or consumers). A set P(N) represents a set of
all subsets of N. That is, we define P(N) = {M|M C N} as a market set, which is a power
set of N. A set of market structures MS is defined by MS = {M| Uprepmnycp(nyy M = N}.
Each factor M € MS is also called a market structure. Therefore, each player in N must belong
to some markets in a market structure. Each M; € M,j = 1,2,3,--- ,m is a market to which
several players belong or to which only one player belongs. An m is a finite number of markets.
Therefore, a market structure shows a bundle of trade places belonging to each player. Throughout
this paper, the market structure is given. We do not discuss the formation of market structures.
We would focus on the steady state of the market in the situation in which the player accepts the
strategic choice of endowment for each market.

Consider the case of N = {1,2,3}. For example, we can consider some market structures
M = {My, My, M3, My}, My = {1,2,3}, My = {1,2}, M3 = {1,3} and My = {3}. The following
Figure 1 represents this market structure M.

The market M; is a centralized market to which all players belong. However, player 1 also
belongs to the market M5 and M3 at the same time. These are decentralized markets where player
1 can trade or exchange with player 2 or 3. The market My is a singleton set, where there is
no trade. Player 3 should decide simultaneously how much goods one will consume by oneself
in the "market” M, and how much goods one will provide for the centralized market M; and
the decentralized market Ms. In the market Ms, player 3 should directly negotiate with player 1
through a process of coordination.

In this example, a centralized market usually consists of only one ground coalition N, that
is, the market M;. Therefore, our decentralized modeling includes a centralized market exchange
model. If the market structure only consists of a pair of two players, our model coincides with the
network models.
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Figure 1: A market structure

2.2 The Decentralized Pure Exchange Economy

In this paper, we consider a pure exchange economy in a market structure M.

R! represents a [-dimensional Euclidean metric space. 1 A set X; = {3 XM|XM c Rli €
M € M}} is defined as the set of consumption of the player i for each i € N.

Let w; € R, \{0} be a player i’s initial endowment. We assume that >, v w; = w € R, We
will also define the set of initial endowment strategy of the player i’ for a market structure M as
follows:

Qz:{ H wlM
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We can also define the strategy set of initial endowments as Q = [[;_, Q.
Lemma 1. The set of strategy for initial endowments ) is a non-empty, compact, and convex set.

Proof. We can easily prove the nonemptiness of 2. At least, we can always construct a strategy
as follows. For some wM € Q;,

T\ e My e MY TR € My e MY

|A| means the cardinality of the set A. In Euclidean space, the compactness of the set is equivalent
to the condition that the set is bounded and closed. First, we will prove the boundedness of .
Obviously, for Q; of each %, the (0,---,0)(K-tuples,K = |[{k|i € M}, € M}|) is an infimum and
also (wy, -+ ,w;)(K-tuples) is a supremum. Therefore, §2; is bounded above and below.

Second, we will show that §; is closed. Suppose that a sequence {w!}(wl € Q;,n =1,2,--+)
is a convergent sequence such that lim,_,. w? = w}. For each n, there exists some j, and wf =
Min Mj;n

.. .. M
7 ’ 7 ’ 3

L w - ,w; ") satisfies Zje{klieMkeM} szjn = w; by definition. Hence, the limit

M *

%

(w

point w; also satisfies {(klieMyeM} @ = w;. Therefore, €2; is closed and then compact.

n general, every Euclidean metric space is a Hausdorff space. And every compact Hausdorff space is a Baire
space (Munkres[18, Theorem 48.2(Baire categoy theorem)]. The main article(Dubey and Ruscitti[9]) to which we
will refer proved the main theorem in the locally Hausdorff space and the Baire space. However, our goal is not the
generality of topological space. Therefore, in this paper, all mathematical space is a Euclidean metric space without
several finite sets.



Next, we will prove the convexity of Q;. Suppose that w?,w? € ;. However, we can also easily
prove that « - wf + (1 — a) - w? also satisfies the above equation for any (0 < a < 1) because we
know that a - w; + (1 — a) - w; = w; for any w® and w?, for any a. Lastly, we can prove the lemma
by applying the fact that  is finite products of €2; for all ¢ € N. Q.E.D.

Let AT = {p’ € Rﬂr\]ﬂ = (pY,p%, .- ,plj),ZZﬂpkj = 1} be the price set for a market M;.
The element p? € AJ is the price of a market M;. Let AM = [TjZ, A7 be the set of prices for a
market structure M. We should remark that these settings, that is, consumption sets and prices,
are defined over the market structure, not the each market. Our pricing rule requires that multiple
price systems be synthesized through each player to maximize their own utility, which may amount
their own offers in the relative markets.

Assumption 1. If 3M € M, |M| = 1,then p™ = (p*,... pM) =pi, >0.

This dummy price p% , is any positive price, the notation of which is commonly used in this
article. Because the market of our model includes the single player case, we need Assumption
1, which provides some dummy prices. If some market M is a singleton coalition, the single
player on the market M cannot trade with anyone. The equilibrium price of the market is not
endogenously determined. However, if the price of some good is zero, the player can consume
infinite amounts of the good. This is not an equilibrium. Therefore, Assumption 1 is required for
the market equilibrium of a singleton market. This assumption may mean that each player knows
the finiteness of the goods as some imagined positive price.

Next, the utility of each player i’ is defined as a function u; : X; — R.

Assumption 2. The utility function of each player ¢’ u; is continuous, strictly quasi-concave, and
strictly monotonic.

A pure exchange economy in a market structure is defined by E(M) = {N, M, (X;,u;,w;)ien,
AM}. In a usual and centralized pure exchange economy, the market structure consists of only
one coalition N. Thus, our model includes the usual pure exchange model as a special case.

The decision processes for each player are as follows. First, each player will choose a combination
of initial endowments for each belonging market with one’s utility maximization. That is, each
player plans a distribution for market A, market B, market C, etc., based on some implicit decision
rule before the start of all market trades. The player will be assumed to recognize the structure of
the equilibrium in the market. Second, each player will maximize one’s utility among the combined
budget set of the budget sets relevant to the player. Third, the equilibrium of the markets will
be achieved by invisible hands. Finally, the result of the equilibrium will also influence the first
decision to choose an initial endowment. All players will repeat these processes until the steady
state is achieved. In steady state, the market is the Walras equilibrium, and the profile of initial
endowment is also the Nash equilibrium.

2.3 The Walras Correspondence

For each economy £(M), by Assumption 2, we can define the aggregate excess demand function
Z : AM x Q — Rl as follows:

Z(p7Ql7QQ7"' aQi7"' 7Qn): H {Zz](vaprjjw)_ Zw;\/j}
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The demand function can be defined by z; : AM x AM . ij — Xj foreach j € M € M as a
result of each player’s maximization of the player’s utility u; under the budget set {z; € X;|z; =
Yiemzi,pM - alt <pM-wM(i e M)}



Lemma 2. The excess demand function Z is jointly continuous.

Proof. The remarkable point of our model is that each player should evaluate their own utility by
summarizing choices in the markets to which the player belongs. The utility of the player ¢’ is
redefined as U; = u; o fi, fi: [[;cur XM Y icm Xi- The function U; also obviously satisfies the
conditions of Assumption 2, that is, continuous, strictly quasi-concave, and strictly monotonic on

[Licwm xM.

In light of Lemma 1, the demand correspondence z;(p, Proj,p - ©;) 2 is also continuous. Z is a
finite product of the object that is the finite summation of the correspondence x; minus the finite
summation of w;. Therefore, Z is jointly continuous. Q.E.D.

3 An Equilibrium

The aim of this section is to prove the existence of the Walras equilibrium and the Nash-Walras
equilibrium. First, we will prove the existence of a Walras equilibrium of any market structure for
any initial endowment distribution.

We will introduce the concept of equilibrium for a market structure M.

Definition 1 (A Walras equilibrium of a market structure M for w € Q). For each economy
E(M), for a w € Q, there exists a price p € AM, Z(p,Q1,Q0, -+, Qiy -+ ,Q,) =0

We can also define the Walras correspondence W : Q — A™M as follows:
w = W(w) ={p e AM|Z(p,w) =0}

The next theorem guarantees the existence of a Walras equilibrium. However, we should rec-
ognize that our formulations may be very strict and in a typical form.

Theorem 3. For any M, for any w € (), there exists a Walras equilibrium. That is, the Walras
correspondence W(w) is non-empty.

Proof. By Assumption 2 and Lemma 2, we can find that our settings satisfy the standard con-
ditions of existence for general equilibrium, for example, convexity, compactness, monotonicity,
and continuity of feasible sets or utility functions. Hence, a Walras equilibrium exists. See also
Mas-Colell et al. [16, Proposition 17.C.1]. Q.E.D.

We will express this equilibrium price for an initial endowment as p*(w) € AM.

Definition 2 (A Nash-Walras equilibrium of a market structure M). There exists a Nash-Walras
equilibrium of a market structure M if and only if

YM e MS,Vi € N,Vw,; € Q;,Jw] € Q,
ui(i(p* (Wi, wa, -+ s wy))) = (i (p” (wi, w2y)))-
Dubey and Ruscitti [9] proved the theorem in a more general version of the following proposition.

Proposition 1 (Dubey and Ruscitti [9]). Suppose that Assumptions 2 hold. Then, there exists
a dense subset of Q such that the restriction of the Walras correspondence W' to this subset is
continuous.

Our proof of the next theorem is essentially dependent on Proposition 1.

2Proj;p means the projection mapping with the price p to the player 4’s trading market price coordination.



Theorem 4. For any market structure M, there exists a Nash-Walras equilibrium.

Proof. By Proposition 1, Vw € Q,3D(w) C Q,D(w) is dense and the Walras correspondence W (w)
is continuous on D(w). We can define the cover set as D(Q2) = U,eqD(w). Obviously, the Walras
correspondence W (w) is also continuous on D(Q) for all w € © . We can also confirm that
QO C D(Q). Therefore, Vw € Q,W(w) is also continuous in . Hence, for all w € Q, for all
p* € W(w), we can redefine the continuous utility function u; in  for ¢ € N, because the demand
function z; and the utility function u} are continuous for all p* € W(w). In addition, the redefined
* inherits the property of the original utility function, that is, strong monotonicity and strictly
quasi-concavity.
By these conditions and Lemmal, we can apply Berge’s maximum theorem and Kakutani’s
fixed point theorem to this strategic form game. See also Berge [2, p 116, p 174] or Border [4, p
64, p 72]. This fixed point is the required equilibrium point. Q.E.D.

Next, Theorem 5 shows the link between the Walras equilibrium and the Nash-Walras equi-
librium in our model. Busetto, Codognato, and Ghosal [5], whose model is sequential, non-
cooperative, partly atomless players settings, have already shown the equivalence between the
outcome of a Walras equilibrium and a subgame-perfect Nash equilibrium. Our next theorem is
similar to their main theorem. Of course, our settings are different from theirs.

Theorem 5. If a market structure M such that M = {N} has a Walras equilibrium, then for
the market structure M’ = {{i,j}|{i,j} C N,i € N,j € N,i # j}, there exist w*M' | these Walras
equilibrium outcomes, the equilibrium price p* and the equilibrium demand x*, are a Nash-Walras
equilibrium.

Proof. Let us define z* as the offer of the Walras equilibrium, and p* as the Walras equilibrium
price. Assume that p* = pl»} for all 4,5 € N, # j. If the price of all markets is equal, each
merged budget set of all players is not kinked (See also Figure 3 in section 4.5, which illustrates the
”kinked” budget set.). This is because the merged budget set in several pairwise markets coincides
with the budget set in the centralized market. That is, for each i € N,

{zz—eX =Y aMpM gprZM(ieM)}
€M

Z{wiGXi T; = Z fﬂz{i’j}w*'ﬂ?;{i’j}SP*'wi{i’j}(jeNJ?éi)}

JEN,j#i

* *
i|Ti =T, P Xy <P 'wi}

In this case, we can freely choose the strategic initial endowment for each budget set without
affecting the maximization of utilities, because the allocation plans of initial endowments do not
affect the feature of their budget set. Therefore, we can concentrate on searching the balance
between the strategic initial endowment and the equilibrium demand.

. _ #{i,5}

For each i € N, we can choose z7, such that 7 =3\, 7;

* M’

(% * *
and x *(xlf"azﬂ"ﬁxn)'

which satisfies the condition of each market
(i}

Next, we should find the initial endowment w
clearing. For each ¢ € N, it should satisfy that w; = Zg#meN w; N N

In addition, it also should satisfy that V{i,j} € M/, i{w} + ;{”7} = x:{m} + x;{”}. First,
we will define an artificial evaluating function as

Ui(wi v , Z \/ {Z,J}+w{z,J} j{i,j}_x;{i,j})Q

J#LJEN




for each i € N. 3 Obviously, the function is continuous on (), which is defined in the proof of
Theorem 4. We can also define the mapping as

K2

Vz’(wM',w/_V}/) = {(I}Z-M/ S QZM/

vi(ij,wM/): max vi(wM',wM/)}

for each ¢ € N.

We can also apply Berge’s maximum theorem to V;(wi',w™!’), then, the mapping is upper-
hemi continuous and compact valued. However, the mapping may not be convex valued. We will
define the extension of the mapping as V; (w{\"/7w/_\’}/) = coVj; (w;M/, w/_\’}/), which is the convex hull
of Vi(w{‘/‘/,wﬂ’}/). This mapping is also upper-hemi continuous (See Border [4, p 61] ), obviously
convex and compact valued. Of course, these convex combinations of the maximum points are
feasible in Q;(e).

Next, let us construct the mapping V(wM/) as V(wM/) =Ilien ‘Z(w{v",wi\g'). We can apply
Kakutani’s fixed point theorem to this mapping again. This fixed points include at least one
point of the maximum of each v;,7 € N. This fixed point is a candidate for the required initial
endowment. We should confirm that the candidate may satisfy the market clearing conditions.

Assume that the candidate w*™ does not satisfy the market clearing conditions. Then, for
some goods k, Ja € N,3b € N, wfj{a’b} + w,’f{a’b} < x’;*{a’b} + xl’f*{a’b}. For all M, M’ € M’ such
that M # M’', M N M’ # (), because the market structure M’ is a complete graph in the meaning
of graph theory (See Bollobds [3, p 3]), that is, all players are individually linked with all of the

other players.

Hence, 3c € N, wk —|—x’g*{a’c}, because x* is a Walras equilibrium. For
some sufficiently small § > 0, player a can transfer § from the market {a,b} to the market {a,c}.
That is, ws{a’b} +d4+ w{f{a’b} < x’;*{a’b} + x’g*{a’b} and ws{a’c} -0+ wé“{a’c} > x’;*{a’c} + x’g*{a’c}.
However, this transfer obviously improves the value of the evaluating function v,. This is the
contradiction to the fact that the w* is the maximum point of the fixed point of V. Therefore, the
fixed point is a Nash-Walras equilibrium. Q.E.D.

{a,c} +w§{a’c} > w;;*{a,c}

Theorem 5 shows the robustness of the centralized market through some decentralized strategic
market. Any Walras equilibrium in the centralized market can be described as a e-Nash-Walras
equilibrium by the appropriate allocations of the initial endowments in the pairwise markets. In
other words, the pairwise economy is guaranteed to realize the outcome of the Walras equilibrium
in the centralized economy. Of course, if some links between two players are cut, the coincidence
of the Walras equilibrium with the Nash-Walras equilibrium is not guaranteed. These facts can be
confirmed as the numerical examples in Sections 4.4 and 4.6.

4 Numerical Examples

In this section, we will show several numerical examples of our model. Several examples of the
incomplete market model, including some self-consumption models, are already illustrated by
Ventura[26], who provides the formulations for some self-consumption cases. We will provide other
examples in our decentralized settings. In Section 4.7, we will compare the following examples and
summarize the utility of the players in each case.

The common settings are as follows. N = {1,2,3},w; = (3,3) € R fori € N, u; = %lnx% +
tIna?, up = SInal+$na3, and ug = & Inal+ 8 In a3, which are the so-called Cobb-Douglas-type
utility functions.

3The notion of —i means all players other than player i



We will present six examples of market structures in the case of three players. The following fig-
ures (Figure 2) represent coalitional situations of the six following examples. Detailed explanations
are provided in the following subsections. In addition, the detailed formal settings of maximization
problems, formal calculations and SymPy # source code are also provided in Appendix.

Mz—{2 3}
M4—{2}

Ml—{l 2 M2~{1 3w _{1 3 '

e , Mg—{2 3}

Figure 2: Six examples of market structures for three players

4.1 Robinson Crusoe economy: Case A

First, we consider the independent economy where each player is a ”Robinson Crusoe” (the upper
left of Figure 2). Each player may self-consume one’s own initial endowment. That is, M =
{{1},{2},{3}}. All players cannot choose any combination of initial endowment for each market
because they belong to only one coalition which consists of one player. They are not forced to
provide their initial endowment with a public market. Therefore, each player’s strategy set is a
singleton set, which is a compact and convex set. That is, ; = {w;} for i € N. For an equilibrium
price, we can give any price that is strictly positive. In this market structure, the economy is
always the Nash-Walras equilibrium for any properly imagined price. The equilibrium price is
plit = pi4 > 0fori=1,2,3. Of course, their utilities are u; = uy = uz = In(3) = 1.099.

4.2 Self-consumption vs. bilateral trade: Case B

See the upper middle of Figure 2. We will consider that player 1 still lives on a single island,
player 2 trades with player 3, and player 3 also consumes a part of the initial endowment by
oneself without providing one’s whole initial endowment for the market of players 2 and 3. The
market structure is M = {{1},{2,3},{3}}. Player 2 will usually solve the utility maximization
problem. However, player 3 will not only solve the maximization problem, but should also decide
the amount of self-consumption. Because players 1 and 2 participate respectively in the single
market, Q; = {w;} for i = 1,2, which are non-strategic strategy sets. For player 3, the set of
strategies for the initial endowments is Q3 = {(w§2’3} {3}) € R? |w{2 SF 4 w{‘s} ws = (3,3)}.
Player 3 can have monopolistic behavior. On the other hand, player 2 is a price taker. In pure

4SymPy(Meurer et al.[17]) is the symbolic mathematics package, which is based on the free and open source
language, Python.



exchange models, many genuine articles provide the formalizations of monopolistic circumstances,
including self-consumption.
Our calculation results for the Nash-Walras equilibrium are wit = (3,3) = 27t w333 =

*23 *{3 *{3 *{2,3 *{2,3
(3,3), wi 2% = (3,8) wrt® — (3 3) — 308 o }=<%%>,x3{ }—<@»%>,u2=%m<%>+

éln(lo) =1.271, us = § In(39) + 3 In(3}) = 1.511, plt =pB = p* _ and p{23t = (3%,42). Player
3, who has the monopolistic power, increases the utility compared to the previous example. Player
2 also increases the utility. However, player 2 does not reach the utility level of Walras equilibrium
in the case of both players being price takers, who cannot take self-consumptions.

Player 3 obtains the monopolistic power by increasing the scarcity of the commodity to which
player 3 less prefers through the strategic self-consumption decision. Good 1 is more scarce, the
price of good 1 may be higher, and the feasible set of player 3 may expand. However, player 3 should
also consume the less preferred good 1. Therefore, player 3 can achieve some decision-making to
select the level of self-consumption.

This situation is similar to the coordination of agricultural production. For the purpose of
raising the price of some crops, some farmers will self-consume or discard a part of the crops. As a
result, the consumers as farmers increase the price of crops and their benefit. However, the welfare
of the general consumers may decrease.

4.3 Bilateral trade with strategic initial endowment allocations: Case C

The market structure is M = {{1}, {2, 3}, {3}, {2} }(The upper right of Figure 2). Player 1 still
lives a wayward life alone. In addition to the previous example, player 2 is also able to reserve
a part of the initial endowment for self-consumption. Both players 2 and 3 can plan strategic
behavior.

The Nash-Walras equilibrium, whose concept allows a zero value of € in the definition of e-

Nash-Walras equilibrium, is wl{l} (3,3)w *{2} 0,2) = x;{Z},w;{Q’S} = (3,3), w§{2’3} =

*{3 *{3 *{2,3 *{2,3
(3:3)w 3{} (3,0) _73{} { )= (4’;) a:3{'} = (3:9u2 = §In(4) + 5In(2) = ug =
$1In(2) + £ In(4) = 1.309, p{ Ri :p++(z =1,2,3) and pt2# = (1, 1) | which does not coincide with
both the previous example and the situation in which two players are price takers.

We can also calculate the case where players 2 and 3 are price-takers, that is, M = {{1}, {2, 3}}.

The Walras equilibrium is z;{2’3} = (i, g),m§{2’3} = (2,8 uy = Sm()+ in(2) = ug =

$In(2) + SIn(42) = 1.443, plt = ph . and pl23} = (3,3) -

The result means that the monopolistic profit of player 3 may vanish by the change of cir-
cumstances, where both player 2 and 3 are ”"monopolistic”. That is, they are duopolistic or
”Cournotian” players. Player 2 can achieve more utility than the previous example, where the
other player is monopolistic. However, their utilities may decrease, compared with the gain of
two players in a competitive Walrasian market. This situation coincides with the Cournot-Nash

equilibrium of quantity competition in duopoly.

4.4 A centralized pure exchange economy with three players: Case D

In this subsection, we provide a numerical example of a typical centralized market to compare
with the other market structures. The market structure is M = {{1,2,3}}(The lower left of
Figure 2. All players belong to one single market. In addition to the case of subsection 4.1, the
set of strategies of each player is a singleton. All players are forced to provide their entire initial
endowment for one single market. By the calculation of this problem, their consumption and
utilities are 7 = (3,3),23 = (18, 2) 25 = (3, 16) ur = $In(3) + 31In(3) = In(3) = 1.099 and
uy = 3In(28) + §In(3) = uz = f)ln( )+ 31 ( ) = 1.443. The (Nash-) Walras equilibrium price
is pil23} = (1,3)



As a result of their utility maximization, player 1 does not make a trade; on the other hand,
players 2 and 3 trade directly with each other. Player 1 is neutral to the preference of good 1 or
2. On the other hand, player 2 prefers good 1 to good 2, and player 3 prefers good 2 to good 1.
Therefore, both player 2 and 3 need not trade with player 1. Although player 1 is a member of this
centralized market, player 1 is essentially not given the role of a trader. Obviously, this centralized
economy can improve the utilities of the three players in the meaning of Pareto. However, for
player 1, these situations are not different from the residence on some single island.

4.5 A decentralized pure exchange economy with three players where
one player is a middlemen: Case E

The market structure is M = {{1,2},{1,3}}(The lower middle of Figure 2). Player 1 can trade
with players 2 and 3. On the other hand, players 2 and 3 cannot directly trade with each other.
If player 2 wants to trade with player 3 indirectly, player 2 should trade with player 1. In this
example, player 1 may play the role of a middleman as Rubinstein and Wolinsky [20] have discussed.
However, player 1 is not explicitly given the role of a middleman. The role depends on the situation
of the market structure and the possibility of player 1’s strategic behaviors. Player 1 may become
a middleman as the result of one’s own utility maximization under the circumstances of coalitional
relationships. Therefore, our model may implicitly include the situation of middlemen.

N\ N\
Player 1’ s X2

L Player 1’ s strategic
initial endowment

X2 allocation for Market M,

‘ ™ > X > Xi
/ 3 \

N i N
X2'| This hdtched area cannot be

. h | in th tralized
; Player 1’ s strategic choosen in the centratize

Xo | | allocation for Market M,

Figure 3: A budget set in a decentralized market

Figure 4.5 describes the budget set of player 1. The graph in the upper left corner is the
initial budget set of player 1 before dividing the initial endowments to the market M; and M.
The budget set is realized if the price ptt2} = p{13} = (%, %) Player 1 will plan to divide the
initial endowments wy = (3, 3) where wfl’Q} = (1,2) for the market {1,2} and wil’?’} =(2,1). The
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graph in the lower left corner shows the set of budgets for the market {1,2} and the upper right
corner shows the market {1,3}’s. In the lower right corner, these budget sets are merged. The
feasible set of player 1 is kinked and extended, compared to the feasible set of the upper left corner.
At this kink point, player 1 will maximize the utility in this set of prices of p{t# = (2, 1) and
p{13 = (1,2). The offer for the market {1,2} is x{l 2= = (0,4). The other offer for the market
{1,3} is x{l 3} = (0,4). Hence, the total offer of player 1 is x; = (0,4) + (4,0) = (4,4) , which is
never reahzed in the central economy. Players 2 and 3 may also maximize their utilities, where the
demand for player 2 is x5 = (4, 1) and the demand for player 3 is 23 = (1,4). These are the Walras
equilibrium for the market structure M = {{1,2},{1,3}} and the initial endowment allocations

wi? = (1,2) Wi = (2,1), Wi = (3,3) = wy, and wi™® = (3,3) = ws. And their utilities
are u} = 1 1In(4 ) 1ln(4) = 1.386 and uj = uj = $In(4) + i g In(1) = 1.232.

Because player 1, as the middleman, may be monopolistic, the player can improve one’s own
utility by selecting other combinations of initial endowment allocations. Player 1 sells a small
amount of good 1, which is more preferred by player 2. Then, player 1 can buy a large amount of
good 2, which is less preferred by player 2. Player 1 for player 3 is the same as for player 2. Player
1 can receive many benefits by playing the role of a ”broker”.

However, the Walras equilibrium is not a Nash-Walras equilibrium. Player 1 can improve one’s
own utility by more accurately calculating the initial strategic endowment allocations. On the
other hand, players 2 and 3 may decrease their utilities.

Finally, we will compute the (monopolistic) Nash-Walras equilibrium of the market struc-

ture. The Nash-Walras equilibrium is ptt?} = (2\2/\5/311, 2\/%“), pit3h = (2\}“ 2\2}?1), i =

(e, a2) = (ay™? 4 a3 T G = (0 + (6 — ££2)),((6 — £2) +0) = (6 -

26— 42) = (4114,4.114), wih? = (=2 4 22 10 243y = (0609 2391) Wit =
(13—0 — W22 22y = (2301, 0609) f(xf) = n(—%22 +6) + %m(f% +6) = 1.414 and

ub(ws) = uj(z3) = & ln(2f +8)+in (2\?[ + %) = 1.168. These are the Nash-Walras equilibrium,
which refines the above Walras equilibrium. Therefore, we can interpret that the Nash-Walras
equilibrium may be some refinement of the Walras equilibrium by the strategic concept of Nash
equilibrium.

4.6 A decentralized pure exchange economy with three players where
all players poses the strategy set: Case F

The last example is the case in which all players can strategically and potentially choose their
own initial endowments for each market. Exactly as player 1 may behave in the previous ex-
ample, players 2 and 3 will also plan the choice of wy and ws for the market structure M =
{{1.2}.{2,3}, {1,3}}.

However, all players cannot simultaneously exercise strategic behavior in this market. If the
price of each market is different from the others as in Case E, the maximum of their utilities
is the point of the kinked budget set, as shown in Figure 3. If all players select the point, we
should accept the utopia world. If the prices of all markets are equivalent, the allocations of the
initial endowment are indifference. We can confirm that the strategic behavior of the players is
meaningless. Therefore, the result of the Nash-Walras equilibrium coincides with the case of section
4.4. In addition, we can find the appropriate allocations of the initial endowment following this
equilibrium. We can also find that the role of player 1 as the middleman may vanish. The result
of this numerical example is consistent with Theorem 5.

12



U1 U U3 M

R
Case A 1.099 1.099 1.0909  {1},{2},{3} ® @
\0%:(”
Case B 1.099 1271 1511  {1},{2,3},{3} o O
"ﬁ‘zm

M2}

Case C 1.099 1300 1309 {1},{2},{2,3},{3} @ e

°Mv<ll2}l
Case D 1.009 1.443 1.443 {1,2,3} o ¢
():‘ﬁ,q|z)
Case E 1414 1.168 1.168 {1,2},{1,3} o

Case F 1.099 1.443 1.443 {1,2},{2,3},{1,3} 9..®

Table 1: Utilities of 3 players

4.7 A summary of examples

We will show the summary of the above examples in Table 1.

Obviously, their utilities of Cases B, C, D, E, and F are more efficient than those of Case A. All
players may be eager to deviate from the situation of Robinson Crusoe. If players trade in Case
C, they can increase their utilities by making a coalition {1,2,3}, that is, the centralized market
Case D. However, other cases are not comparable with each other.

For example, although the most desirable target of player 1 may be Case E, the other player
does not want the case. For the deviation of player 1 from the level of initial endowment, player 1
should divide the linkage between player 2 and 3. For peacefully increasing the utilities of players
2 and 3, they should keep their coalition sustained. In Case F, all players are linked to the other
players. Then, the benefit of player 1 may be extinguished again.

Therefore, each case may not be a stable state in the meaning of the formation about market
structures. Of course, it is important that we become able to compare among different coalitional
situations on that common platform.

5 Concluding Remarks

Our model may succeed in describing the situation in which the market structure decides the
market allocation in the steady state. As shown in Section 4, the diversity of the utilities of
the players in the Nash-Walras equilibrium may depend on the structure of the market or the
coalitional characteristic, even if all their initial endowments are equal. In our model, the role of
each player may also be decided by the market structure, even if the behavioral rule is common.
Someone is a Robinson Crusoe. Someone is a middleman. Someone is a monopolistic trader. The
others are Curnotish, Nashian, Walrasian or other players who make complex behaviors.

These different roles are not explicitly given. Each player will behave according to only two
individual disciplines. One is to maximize the utility given for the price and the initial endowment
given under budget constraints. The other is to maximize utility given the initial strategic endow-
ment allocations of other players and the market structure. However, each consumer may achieve
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a task as a non-cooperative player without receiving any scheme for controlling the market.

In our model, we can also confirm that the key factor of the consequence in the market is the
characteristic of the market structure or the structure of coalitions including the network models.
We believe that this descriptive possibility may be the main point of our article’s advantage over
other models of the decentralized market.

Of course, it may be difficult to calculate the equilibria of more huge economic models compared
to our numerical examples. Therefore, for the application of our model, we need to simplify the
utility functions or other settings.

In this article, we also provide the equilibrium concept, that is, the Nash-Walras equilibrium.
The concept may be naturally introduced to our model. We can also recognize this equilibrium
concept as the refinement of Walras equilibria in our model. In other words, we may rationalize the
Walras equilibria by the concept of Nash equilibrium. Therefore, in future studies, we can replace
the Nash equilibrium with some solution concepts of the strategic form game , that is, strong Nash
equilibrium, a-core, S-core, etc., although we need to introduce the other coalitional concepts in
our coalitional model. We believe in the possibility that our model may expand the descriptive or
positive area of the coalitional and strategic economy.

A Calculations of Numerical Examples

For each market, the price of good 1 is normalized by the price of good 2. Therefore, in the
following calculation process, the price of good 2 is always 1. The normalized price of good 1, that
is p'p?, is re-defined by p'.

A.1 Case B in Section 4.2

Let us construct the utility maximization problem for each player. For player 1, we do not need
any construction. For player 2,

max,1 ,2 Uz = %ln s+ %ln x3
s.t. pH23h gl 122 < pH23 3413
The lagrangian of this maximization problem is
Lo = ug + Ao (pHZ3 - 2l 4 22 — 3pt23 _3)
For player 3,
max, ;2 uz = §Inay+ 5 naj

st p1{2,3} ,_1_33% +1- .%'?)) < p1{2,3} . (w§{2’3} —&-w;{?’}) +1- (w§{2,3} +w§{3})
Wb 4 16 g

BB LB g
The lagrangian of the player 3’s maximization problem is
L= uz + As(pH 23 ad a2 — pH23(3 - 3B — WI0)

The first order conditions are the followings; 0L2 /023 = 0, 0Ly/0x3 = 0, L2 /ONg = 0, OL3 /023 =
0, 0L3/0x3 = 0,and 0L3/0A3 = 0. We can solve these equations. We have z} = 8(p1{2’3} +
1)/3pH23} 22 = p1123} /3 4 1/3, and Ay = —1/(3p* {23} + 3). Also, we have

:cé _ (—w§{3}p1{2’3} _ wg{?’} 1 3pH23} 4 3)/9]31{2,3},
(1) 22= —8w§{3}p1{2’3}/9 - 8w§{3}/9 + 8p'123} 1 8/3, and
Az = 1/(w?1){3}p1{2,3} + wg{?i} _3pH23} 3).
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The conditions of market equilibrium are z3 +2} = 3+ (3—w?1){3}) and 23 +2% = 3+(3 —wg{g}).
We can substitute x3, x1, 22, and 23 for these equations. We can solve these equations and we
have the price,

2) P = (Wi - 27)/(8u5 " — 27).

Next, we should calculate the maximum by initial endowment allocations. We will replace the
demand (2}, 23) of (1) solved by the maximization problem with (2} +ws® 22 + w2t including
an initial endowment plan for the market {3}, which is consumed by oneself. We will also substitute
this newly defined demand, the allocation of strategic initial endowment, and the solved price (2)
for the utility functions of player 2 and 3. The utility function of player 2 in the market equilibrium
is

2{3}
S(20 ) n (%Jr W23} g7 )

3 8w1{3} —27
Ug = 9 + (s )
The utility function of player 3 in the market equilibrium is

1{3}( 2{3} P 2{3}
1{3} w3 (w3t 2r) oy 8(w3") -27)
8 —27) | — - 434
“3 )( 8w§{3}—27 “s

swit3t a7
In w;{iﬂ_‘_ 9(w§{3}727) 3
= {3} {3} 9 {3}
8w§ 3 (w§ 3 727) 213} 8(w§ 3 ,27)
+81“< I I A )

The first order condition of the maximization choosing the strategies, that is, the allocations
of initial endowments, we will differentiate these utility functions. We can obtain simultaneous
equations below.

64w§{3}(w§{3}727) 8(w§{3}727) 64(w§{3}727) >

P W (G A e M C™ L
I (e
9 8w3 °f 27 3 8w3 —27
1{3} (,2{3} _ 2{3} 2{3} _ 143}/ 2{3} ¢ a3}
1{3} Bwg (“’3 27) WAt _og 24(w3 27) w - Cor ‘ a(o o
(s _27)( (8%{3}727)2 _swdé{g}—w_(sw;{ﬂ,w)z 8 7%},27)*‘“3“%&&%
+ 9(w§{3}_27) +1+ g(wg{s}_w) o
O T Y il ) BTN C )] -
1{3} ° Swé{g}_” 3 8w§{3}—27
9| w3 '+ 9(w§{3}727)
8| — Swé{g} +14 8
ouy R AR CHOE
8w§{3} - ( 8%&}(%{3}727) L2138} 8(w§{3}727)>
9 — 428 34
) ) L3 (L2103} _ar) (w202
w,l(g} w: w —o7 3(w o7
(8w§{3}_27)<_sw1{d3},27‘1+8w1{§}727> (Swé{?’}‘”)(‘ s 8w§{§ - —w§{3}+3+m)
3 3 B
+ 9(w§{5}727) I 9(‘“2{3}27(2; P} 0
w, w3 ol —27 . 3(wit®S —27
. W1{3}+(SW;’{3}27)(W“?””*W)
3

9(w§(3}—27)
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The system of equations above is very complex. We can hardly solve it directly. We should
look for the focal point of the maximization problem. Let us plot the graph of utility functions
with the fixation of one parameter of the initial endowment. We will substitute 2 for w;f{?’} of us.

Then

13}
5lw 3 153
13} _ 5 S_ _
2 (8‘”3 27) 1(3) 3 1(3}
2 (8w3™ —27) 2 (8w3™) —27)
In | Wit -
3 459
Us(wé{g}) = 9
ol 68w 1 LT 68
L D
3 (8™ —27) 6 8wt -2
* 9

We can plot the graph of ug (wé{?’}). We can expect a point around the wé{?’} = 3/2 maximum.

The Relationship between w1} and u3

1.5
1.4

1.3

T T T T T T
0{0 0.5 1.0 15 2.0 25 3.0
mi{B)

us

1.2

1.14

{3}

Figure 4: The relationship between initial endowments wé and the utility of player 3

We will also substitute 2 for wg{g} of ug. Then, we have

57 11wt
3

| 10 10
- —_ + —
S (Wi —27) 2
8In + — 1
. 5 15
ug(ws ™) = 9 + 9

We can also plot the graph of us (w;f{?’}).

1{3}

We can also expect a point around w;'”’ = 3/2 maximum.
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The Relationship between w?*! and us

1.5113
1.5112 A

1.5111 4

us

0.5 1.0 15 2.0 25 3.0

0{0
1.51101
w3

1.5109 A

1.5108 -

Figure 5: The relationship between the initial endowment wg{g} and the utility of player 3

Finally, we should confirm these expectations that the utility of player 3 is maximum at the

points wé{?’} = 3/2 and wg{?’} = 3/2. We will substitute wé{g} = 3/2 for 86f{33} and 683{33} , and we
W3 w3
2{3
3{ b

will solve these equations about w
Then, the solution is wg{g} = 3/2. Therefore, the strategic allocation of the initial endowments
(wé{‘g}, wg{g}) = (3/2,3/2) and (w§{2’3}, w§{2,3}> = (3/2,3/2) maximize the utility function of
player 3. Hence, this is the Nash-Walras equilibrium.
We can substitute the above results for the equilibrium price expressed by the initial endowment
variables (2) and the first order conditions (1). Then, we can obtain the required results.

A.2 Case C in Section 4.3

Let us construct the utility maximization problem for each player. For player 1, we do not need
any construction also. For player 2,

max,i .2 U = gln xd+ éln x3

s.t. pH23t gl 1. 23 < pH23L. (w%{Q’?’} + wé{z}) +1- (w§{2’3} + wg{z})

w;{% + w;{2’3} =3
W21 20 g

The lagrangian of this maximization problem is
Lo =y + )\2(1)1{2,3} e p1{2,3}(3 _ w%{?a}) _ wg{?’})
For player 3,

_ 1 1 8 2
max,1 .2 Uz =g Inz3 + §lnzj

st pli23}. fal41-22 < pli23}. (wé{2»3} + w?l){S}) +1- (w§{2’3} + w§{3})
JEC R L

w§{2’3} + w§{3} =3
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The lagrangian of the player 3’s maximization problem is
Ls = us + )\3(191{2’3} - zh 4 22 _p1{2,3}<3 _ wgl,{3}) _ w§{3})

The first order conditions are the followings; L2 /023 = 0, 0Ly/0x3 = 0, L2 /ONg = 0, L3 /023 =
0, 0L3/023 = 0,and L3/0A3 = 0. We can solve these equations. We have

x% _ 8(_w;{2}p1{2,3} _ w§{2} + 3p1{2,3} + 3)/9p1{2’3},
3) 23 = —w;{z}p1{2’3}/9 — wg{z}/9 +p'23} /3 4-1/3, and
Ny = 1/(w;{2}p1{273} + w§{2} —3pi23} 3).

Also, we have

k= (—wé{3}p1{2’3} _ wg{S} 1 3pt{23} 4 3)/9])1{2,3},
(4) a2 = 8wl 23} jg 8,213 g 4 8pl{23} /3 + 8/3 and
Ny = 1/(w§{3}p1{2,3} + w§{3} _ 3p1{2,3} —3).

The conditions of market equilibrium are z3 + 23 = (3 — w;{Q}) +(3- wé{g}) and 23 + 23 =
2{2 2{3
(B-w;) + (3 -wi®h
We can substitute x3, x1, 22, and 23 for these equations. We can solve these equations and we
have the price,

(5) pH2a — p(2ab (220 | (203 gpy ) | g 13 opy

Next, we should calculate the maximum by initial endowment allocations. Similarly as in the
previous section, we will replace the demand (x3,23) of (3) solved by the maximization problem
with (z3 + w;{ﬂ,z% + w§{2}) including an initial endowment plan for the market {2}, which is
consumed by oneself. And we will also replace the demand (z3, %) of (4) with (z} + wé{?’},x?,) +
w§{3}).

We will substitute the newly replaced demands, the allocations of strategic initial endowments,
and the solved price for the utility functions of player 2 and 3. The utility function of player 2 is .

w3 1 (3317 403030 _a7)
S A

9(8w§{2}+w§{3} —27)

S(wé(2}+8wé{3}—27) (_ —w22r sy

s(swat? 403190 a7)
Wi 80l 2} o7

8In w;{2}+

U =

. 9
wl_ wy P (30312 40303 _ar) +8W§{2} i 802(2) 1,208} o7
n Q(Mé(2}+8wé{2}—27) o 3 3(wé{2}+8wé{2}—27)

The utility function of player 3 is

w3 12 (803120 40313 _a7)
Wi 80l 12} o7
98wyt +u310) 27)

(w302 sl (2) or) (_

2{2}  2{3}
2(3 3 8w2 +u3 —27
20 X )

Wi sl _ar

In w;{2}+

Uz =

9
et (- 8w§{2} (8w§{2}+w§{3} 727) +w§{3} +§+8(Bw§{2}+w§{3} 727)
n 9(wé{2}+8wé{2}—27) 9 3 3(u§{2}+8w;{2}—27)

As we investigated in the previous section, we should look for the focal point of the maximization
problem. Let us also plot the graph of utility functions with the fixation of one parameter of the
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{3} 1{2}

, and substitute 0 for w, 32){3}.

initial endowment. We will substitute 3 for wg{Q} and wé and w

Let us fix three of four parameters; w;{z}, wg{z}, wé{s} and w§{3}. We will consider the graph of
the utility function represented by one parameter of the initial endowments.

1{2}
15w 3 45
8 (wl{z} _ 15) o —
12} ’ wy =15 2 w15
8ln [ wy™ — 135
U9 wg{z}:%,wé{g}:%1w§{3}:() = 9
Swi
ln 1{22} + - 1{2§ 15
3wy —15) 3 -
T 9
1.3094
1.308 4
1.307 4
s olo 05 10 15 20
1.306 4 w3
1.3054
1.304 4

Figure 6: The relationship between initial endowments wé{Q} and the utility of player 2

wol® 13wt
5 5
81n
3 (8w3™ —27) L [(2ener 14
45 15
e w%m}:O,w;{S}:%,wg{s}:O - 9 + 9
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1.301

1.254

1.201

Si115 T T T T T T
0{0 0.5 1.0 15 2.0 25 3.0

wg(z)
1.104

1.054

1.004

Figure 7: The relationship between initial endowments wg{z} and the utility of player 2

u,

13}
15w
1{3 3
(83 — 27) <8w1{3} R Sw;é?_z?)
1B

1 | w3
i 135
3 w;{z}:O,wg{Q}:%,wgw}:O - 9
ol 40ws 8 40
n
3 (8w§{3} _ 27) 3 8wl o7
+ 9
1.30 1
1.2541
1.201
s 1'“’0 0 05 10 15 20 25 30
1.10 1 v
1.05 1
1.00 1

Figure 8: The relationship between initial endowments wé{B} and the utility of player 3
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9 11wz

2 10
wy™ " 3 (Wit — 15 "3
81n +4 3
45
us = +
T 9 9

1.3091
1.3081
1.307 A

o . . . .

0/0 0.5 1.0 1.5 2.0

1.306 wg(z)

1.3051
1.304 4

Figure 9: The relationship between initial endowments wg{B} and the utility of player 3

As we consider these four plotting graphs, the focal points may be around the places where

wi® =0, WP =372, WP =3/2, and W21 = 0.

Finally, we should confirm the expectations that the utility of player 3 is maximum at these
points. The first order condition of the maximization choosing the strategies, that is, the allocations
of initial endowments, we will differentiate these utility functions. We can also obtain simultaneous

equations below.

A (3P ) 2200 022
5 o(wh2) 15,103 _o7)? 79(«;:;{2}4—8@';{3}—27)73(w;{2}+8w§{3}—27)2
uy
aw;m w;{Z}(8w§{2}+w§{3}—27) s,2020 s02(2 208} _,;
9 . +—H—+i+— 3 4
Q(wé{2}+8w§{d)—27) 9 503 w;{2)+8w;{3}—27)
8 (wp ' + 8™ — 27 w3 (8 g —27) 2020 200 g7 3(8w; g o)
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. . 1{2 2(3
We will substitute both wg{ Y — 0 and w3{ Y= 0 for 68}‘{22} , 83{22) , 8?{33) , and 66;‘{33} , and we
UJ2 Ws

Owy Owg
will solve these equations about wg{Q} and wé{s}.

Then, the solution is w§{2} = 3/2 and w;’{?'} = 3/2. Therefore, the strategic allocation of the
initial endowments (wj ™, w2t = (0,3/2), (ws*, wi®*) = (3,3/2), (Wit W21 = (3/2,0),

and w1{2’3}, w223 = (3 2,3/2) maximizes simultaneously the utility functions of both player 2
3 3

and 3. Hence, this is the Nash-Walras equilibrium.
We can substitute the above results for the equilibrium price expressed by the initial endowment
variables (5), and the first order conditions (3) and (4). Then, we can obtain the required results.

A.3 The latter half of Case C in Section 4.3 and Case D in Section 4.4

Let us construct the utility maximization problem for each player. For player 2,

max,i .2 Uy = %ln s+ %ln x3
s.t. pH23}. rd+1-23 < pH23.341.3

The lagrangian of player 2’s maximization problem is
Lo =us + >\2(p1{2’3} : :c% + x% — 3p1{2’3} -3)
For player 3,

max,: .2 Us = élnxé + %lnxg
s.t. p1{2)3} . +x:13 + 1- f?), S p1{2:3} -3 —+ 1-3

The lagrangian of player 3’s maximization problem is
Ly =ug + Ag(p3 - 2l 4 22 — 3pt23 _3)

The first order conditions are the followings; L2 /023 = 0, 0L/0x3 = 0, L2 /ONg = 0, L3/} =
0, OL3/dx3 = 0,and 9L3/0X3 = 0. We can solve these equations. We have z§ = 8(p'123} +
1)/3pH23} 22 = pH23} /34.1/3, and Ay = —1/(3p"{#3} 4 3). In addition, we have xl = (pH23 4
1)/3pH23} 22 = 8p'123} /3 1-8/3, and A3 = —1/(3p* {23} 4 3).

The conditions of market equilibrium are 23 + 23 = 3+3 = 6 and 23 + 2% = 3+ 3 = 6. We can
substitute 23, ¥1, 23, and 2% for these equations. We can solve these equations and we have the
price, pH{23} = 1. We will also substitute the solved price for the utility functions of player 2 and
3, and then, we can obtain the required results.

A.4 Case E in Section 4.5

Let us construct the utility maximization problem for each player. For player 1,

max 1(12} 1{13} 2{12} 2{1,3}
ot P12 G102} g 202 ey 102 g 2002
P GI03) g 208 ey 103) g 2003
1{12}+ 1{1 3y -3
2{1 2}+ 2{1 3}

up = %ln(x}{l’z} + x}{l’?’}) + %ln(x?{m} + x?{l’g})

The budget constraints of player 1 are generally kinked, that is, not differentiable in the kinked
points. Therefore, we need an approach other than the Lagrangian method.
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Indeed, if the budget set is not kinked, the prices should always be p'{}2} = p!{1:3} However,
Case E is different from Case D in the point that player 2 cannot trade directly with player 3. If
two prices are necessarily common, player 1 cannot coordinate excess demand or supply of both
player 2 and player 3 with their different utility functions. Therefore, without loss of generality,
we will assume that the equilibrium prices of two markets are different, not the same.

Assume that at the point with maximizing the utility of player 1 the gradient of tangent vector
with contour of player 1’s utility is intermediate between the price vector (p1{1’2} ,1) and the price
vector (p'{13} 1), Hence, the derivative of the implicit function 23 = f(x]) should satisfy that

2
dxy

I
dxi

8u1/3x%
— 5 <
Ouy /O0x3

(6) p1{1,3} < 1{1,2}

, which need to be confirmed after we will obtain the candidate of equilibrium.

Then, as we show the graph in Section 4.5, the point with maximizing the utility of player 1
is the kinked point which is constructed from two corners of two budget sets for the market {1, 2}
and the market {1,3}. We will show again this situation as Fugure 10.

A utility maximum point

The tangent line

S\

The utility function

3

Figure 10: A budget set and a utility function in a decentralized market

Hence, each demand for each market may be the plan that one is 0 and the other is all for each

good. That is, x%‘{m} = 0 and xi{l’g} = 0. We will substitute these conditions for the budget

constraints of player 1. We will solve these equations for x?{l’z} and x}{l’g}. And we can obtain

(7) x§{1,2} — 7w}{1,3} ptin2y wf{l,S} 4g.pHi2 g
and
(8) m}{w} _ Wi{l’g} i wf{l,s}/pl{m}

On the other hand, for player 2 and player 3, it is sufficient to consider the ordinary utility
maximization problem. Therefore, we will calculate as the same as in Case D.
For player 2,

max,i .2 U = gln xd+ éln x3

s.t. ptit2h. rd+1-23 < p2t.341.3
The lagrangian of player 2’s maximization problem is

Lo =us + /\g(pl{l"Q} xy 43— 3ptt2t — 3)
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For player 3,

max,i .z Uz = tlnzl + SInaj
s.t. ptiLsh. +al+1-23 < pit3t.341.3

The lagrangian of player 3’s maximization problem is
Ly =ug + Ag(pt3 -zl 4 22 — 3ptLst _3)

The first order conditions are the followings; 0Ly/0x3 = 0, 0Ly/0x3 = 0, dLs/ONg = 0,
OL3/0x% =0, 0L3/0x% = 0,and IL3/0A3 = 0. We can solve these equations. We have

9) 2L =8(p 1D 4 1)/3pH12} 22 = pHL2} /3 4 178 and Ay = —1/(3p' (12 4 3).
In addition, we also have the followings;
(10) z} = (p't+3 4+ 1)/3p" (13 22 = 8p! 1131 /3 1 8/3, and A3 = —1/(3p' (13} +3).

The conditions of market equilibrium are as follows. For market {1, 2}, mi{m} +ad = w%{m} +3

and mf{l’z} + 2% = wf{l’z} + 3. For market {1,3}, xi{l’g} +ai = wi{l’g} + 3 and J:?{l’g} +23 =
wf{l’g} + 3. Previously, we assumed that xf{m} =0 and 11{1’3} = 0. We will substitute z3, x3
from (9) and x1, 2% from (10) for these equilibrium conditions of the market. And we will solve it

by prices p'{12} and p'{*3} Then, we obtain

8
) o =S
ST 1
11,3 21,3 3w thd
(12) p1{1,2} = _3W1{ 3 3“’1{ - pll{l 3} +17
1

(13) pH1) =

3wi{173} SpHL2) 4 30&{1:3} + 3wf{1’3} —pt12} 1

373

1) ptisy =3 1
(14) p s t3

After we obtain the required solutions, we will confirm the coincidence between (11) and (12), and
between (13) and (14). Because (11) and (14) do not include the price variables, substitute (11)
and (14) for the utility function of player 1 u;. Then

(13} w2{1,3}
1{1,3 1 .
In | w; +3w2{1,3} 1 ) 8wi{1’3} 2013} | 5 24
L) B\ sy + IR
1,3} 2{1.3}y _ 8 8 w1 _ w1 —
U/](Wl ’wl ) 2 I 2

For this utility function represented by initial endowment allocations, we will find the maximum
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point.

240) {13 8 72
(5,113} 2T Z 1 2
Duy (@9 28 (311 = 10) ) (31~ 10)
awi{LS} 2 8&)%{173} 2{173} 3 24
3,113} g +9- 1{1,3}
Wy - 10 3w -10
1
+ =0
2{1,3}
1{1,3} Wy
2 [w RETER
3w1{ 3} 1
8
8u1(wi{1’3},wf{1’3}) 1
2{1,3} - - 1{1,3}
awl 8(4.)1 2{1,3} 24
2 1{1,3} ! +3- 1{1,3}
3wyt =10 3wt =10
w209
- 2
AT
+ =0
2{1,3}
1{1,3} Wi
2| w +
Y
8 8
We will solve these equations and obtain four pairs of solutions; (wi{l’g}*,w%{m}*) = (% — % ,
1., 22 0 _ 2v2 2v2 2v2 | 10 1, 22 2v2 10 2v2
_§+T)v ER —T—%)7 (T+?’ 3T 757) <T+?v —T—%)- How-

ever, the solution other than the first pair is outside the range of initial endowment. Therefore,

(wi{1’3}*,w%{1’3}*) = (1—30 — %, f% + %) is a candidate for the Nash-Walras equilibrium of

this economy. We can obtain the equilibrium price by substituting the result for (11) and (14),
that is, (p*{2}, p?{h2}) = (2¢/2,1) and (p'{1:3}, p2{13h) = (ﬁ, 1) . And also, we can confirm the
coincidence between (11) and (12) and between (13) and (14) .

Lastly, we should verify the solution that satisfies the condition (6). The consumption of player
1 in the equilibrium is (z}*,23*) = (6 — ¥7 6 — %) Hence, we have

Ouy /Ox}

Burfon? |~ 1< p'th? = 2v/2=2.828.
1

1
L3} — _— - 0.3536 <
p 22

The equilibrium plans of player 2 and player 3 can be obtained as usual. Therefore, the results
above are the equilibrium.

B Source codes for SymPy

B.1 Calculation code for Section 4.2

We will not directly solve the equilibrium in the last part below. We can confirm that the graph
for utility functions substituted by required parameters is bipolar by expanding the domain of the
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graph, from (0,3) to (-100,100). Maybe, for this reason, we cannot directly solve the equilibrium.
The calculation of the next subsection is the same process.

# Self-consumption vs. bilateral trade case

from sympy import Rational, symbols, diff, solve,
init_printing, 1n, simplify

from sympy.plotting import plot

#initial settings

x21, x22, x31, x32 = symbols(’x21, x22, x31, x32’) #demands
pl= symbols(’pl’) #price fo good 1

e21, e22, e31, e32

= symbols(’e21, e22, e31, e32’) #initial endowments
12, 13 = symbols(’12, 13’) #lagrange mulitipliers

# Utility functions

u2 = Rational(8, 9) * 1n(x21) + Rational(l, 9) * 1n(x22)
u3 = Rational(l, 9) * 1n(x31) + Rational(8, 9) * 1n(x32)
# Budget constrains

bc2 = pl1 * x21 + x22 - p1l * 3 - 3

bc3 = pl * x31 + x32 - pl * (3-e31) - (3-e32)

# lagrangian

L2 = u2 + 12 * bc2;L3 = u3 + 13 * bc3

# Diffenciations

dx21 = diff (L2, x21);dx22 = diff(L2, x22)

dx31 = diff (L3, x31);dx32 = diff(L3, x32)

# Solve for x21, x22, and 12

solution2 = solve([dx21, dx22, bc2], [x21, x22,12])
display(solution?2)

# Solve for x31, x32, and 13

solution3 = solve([dx31, dx32,bc3], [x31, x32,13])
display(solution3)

# Market equilibirum

mrkt_eql = x21 + x31 -3-(3-e31)

mrkt_eq2 = x22 + x32 -3-(3-e32)

# Substitute and solve for price
pricel=solve(mrkt_eq2.subs([(x22,s0lution2[0] [1]),
(x32,s0lution3[0] [1]1)]1),p1)
price2=solve(mrkt_eql.subs([(x21,solution2[0] [0]),
(x31,s0lution3[0] [0]1)]1),p1)
display(pricel);display(price2)

# Substitute demand and initial endowment
u2_max=u2.subs ([ (x21,so0lution2[0] [0]),
(x22,s0lution2[0][1]), (pl,pricel[0]1)])
u3_max=u3.subs ([ (x31,so0lution3[0] [0]+e31),
(x32,s0lution3[0] [1]+e32), (pl,pricel[0])])

# Differenciation by strategies(initial endowment)
s0131=diff (u3_max,e31) ;s0132=diff (u3_max,e32)
display(u2_max) ;display(u3_max) ;display(sol31l);display(sol32)
# Search the focal point by plotting the graphs
u31lplot=u3_max.subs(e32,Rational(3,2))
display(u3iplot) ;plot(u3iplot, (e31,0,3))
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u32plot=u3_max.subs(e31,Rational(3,2))
display(u32plot) ;plot(u32plot, (e32,0,3))

# Substitute the focal point and confirm the focal point
solA=solve([s0l31.subs(e31,Rational(3,2)),
s0132.subs(e31,Rational (3,2))],e32)
display(solA)

# Substitute demand and initial endowment
display(u2_max.subs(e32,Rational(3,2))
.subs(e31,Rational(3,2)))

display (u3_max.subs(e32,Rational(3,2))
.subs(e31,Rational(3,2)))
display(u2_max.subs(e32,Rational(3,2))
.subs(e31,Rational(3,2)).evalf())
display(u3_max.subs(e32,Rational(3,2))
.subs(e31,Rational(3,2)).evalf())

B.2 Calculation code for Section 4.3

# Bilateral trade with strategic

# initial endowment allocations case

from sympy import Rational, symbols, diff, solve,
init_printing, 1n, simplify

from sympy.plotting import plot, plot3d

# Initial settings

x21, x22, x31, x32 = symbols(’x21, x22, x31, x32’) # Demands
pl= symbols(’pl’) # Price fo good 1

e21, e22, e31, e32

= symbols(’e21, e22, e31, e32’) # Initial endowments

12, 13 = symbols(’12, 13’) # lagrange mulitiplier

# Utility functions

u2 = Rational(8, 9) * 1n(x21) + Rational(l, 9) * 1n(x22)

u3 = Rational(l, 9) * 1n(x31) + Rational(8, 9) * 1n(x32)

# Budget constrains

bc2 = pl * x21 + x22 - pl * (3-e21) - (3-e22)

bec3 = pl * x31 + x32 - pl * (3-e31) - (3-e32)

# lagrangian

L2 = u2 + 12 * bc2; L3 = u3 + 13 * bc3

# Diffenciations

dx21 = diff (L2, x21); dx22
dx31 = diff (L3, x31); dx32
# Solve for x21, x22, and 12

solution2 = solve([dx21, dx22, bc2], [x21, x22,12])
display(solution?2)

# Solve for x31, x32, and 13

solution3 = solve([dx31, dx32,bc3], [x31, x32,13])
display(solution3)

# Market equilibirum

mrkt_eql = x21 + x31 -(3-e21)-(3-e31)

mrkt_eq2 = x22 + x32 -(3-e22)-(3-e32)

# Substitute and solve for price

diff (L2, x22)
diff (L3, x32)
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pricel=solve(mrkt_eq2.subs([(x22,s0lution2[0] [1]),
(x32,s0lution3[0] [11)]1),p1)
price2=solve(mrkt_eql.subs([(x21,so0lution2[0] [0]),
(x31,s0lution3[0] [0]1)]1),p1)

display(pricel) ;display(price2)

# Substitute demand and initial endowment
u2_max=u2.subs ([ (x21,so0lution2[0] [0]+e21),
(x22,s0lution2[0] [1]+e22), (pl,pricel[0])])

u3_max=u3.subs ([(x31,s0lution3[0] [0]+e31),
(x32,s0lution3[0] [1]+e32), (pl,pricel1[0]1)])

# Differenciation by strategies(initial endowment)
s0l21=diff (u2_max,e21); so0l22=diff (u2_max,e22)

s0l131=diff (u3_max,e31); so0l32=diff (u3_max,e32)
display(u2_max) ;display(u3_max)
display(sol21);display(sol22);display(sol31);display(sol32)
# Search the focal point by plotting the graphs
u2lplot=u2_max.subs(e22,Rational(3,2)).subs(e31,Rational(3,2))
.subs (e32,0)

display(u2iplot) ;plot(u2iplot, (e21,0,3))

solve(diff (u21plot,e21),e21)

u22plot=u2_max.subs(e21,0) .subs(e31,Rational(3,2)) .subs(e32,0)
display(u22plot) ;plot(u22plot, (e22,0,3))
u31lplot=u3_max.subs(e21,0) .subs(e22,Rational(3,2)) .subs(e32,0)
display(u3iplot) ;plot(u3iplot, (e31,0,3))
u32plot=u3_max.subs(e21,0) .subs(e22,Rational(3,2))
.subs(e31,Rational(3,2))

display(u32plot) ;plot(u32plot, (e32,0,3))

# Substitute the focal point and confirm the focal point
sol_all=solve([s0l21.subs(e21,0).subs(e32,0),
s0122.subs(e21,0) .subs(e32,0),s0131.subs(e21,0) .subs(e32,0),
s0132.subs(e21,0) .subs(e32,0)], [e22,e31])

display(sol_all)

# Substitute demand and initial endowment
display(u2_max.subs(e21,0) .subs(e32,0)
.subs(e22,s01_al1[0] [0]) .subs(e31,s01_all[0][1]))
display(u3_max.subs(e21,0) .subs(e32,0)
.subs(e22,s01_all[0] [0]) .subs(e31,s01_all[0][1]))
display(u2_max.subs(e21,0) .subs(e32,0)
.subs(e22,s01_all[0] [0]) .subs(e31,s01_all[0][1]).evalf())
display(u3_max.subs(e21,0) .subs(e32,0)
.subs(e22,s01_all[0] [0]) .subs(e31,s01_all[0][1]).evalf())

B.3 Calculation code for the latter half of Section 4.3 and for Section
4.4

# Centralized economy

from sympy import Rational, symbols, diff, solve, init_printing, 1ln,simplify
#initial settings

x21, x22, x31, x32 = symbols(’x21, x22, x31, x32’) # demand

pl= symbols(’pl’) # the price of good 1
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12, 13 = symbols(’12, 13’) #lagrange mulitipliers

# Utility functions

u2 = Rational(8, 9) * 1n(x21) + Rational(l, 9) * 1n(x22)
u3 = Rational(1l, 9) * 1n(x31) + Rational(8, 9) * 1n(x32)
# Budget constrains

bc2 = p1 * x21 + x22 - p1 * 3 - 3

bc3 = pl * x31 + x32 - pl * 3 - 3

# lagrangian

L2 = u2 + 12 * bc2

L3 = u3 + 13 * bc3

# Diffenciations

dx21 = diff(L2, x21)

dx22 = diff (L2, x22)
dx31 = diff (L3, x31)
dx32 = diff (L3, x32)

init_printing()

# Solve for x21, x22, and 12

solution2 = solve([dx21, dx22, bc2], [x21, x22, 12])
display(solution?2)

# Solve for x31, x32, and 13

solution3 = solve([dx31, dx32, bc3], [x31, x32, 13])
display(solution3)

# Market equilibirum

mrkt_eql = x21 + x31 -6

mrkt_eq2 = x22 + x32 -6

# Substitute and solve for a price

sol2=solve (mrkt_eql.subs([(x21,solution2[0] [0]), (x31,s0lution3[0] [0]1)]),pl)
display(sol2)
sol3=solve(mrkt_eq2.subs([(x22,so0lution2[0] [1]), (x32,s0lution3[0] [1]1)]),pl)
display(sol3)

# Substitute demands and initial endowments for utility functions
u2_max=u2.subs ([(x21,solution2[0] [0]), (x22,s0lution2[0] [1]), (p1,1)]1)
u3_max=u3.subs ([(x31,so0lution3[0] [0]), (x32,s0lution3[0] [1]),(p1,1)]1)
display(u2_max)

display(u3_max)

display(u3_max.evalf())

B.4 Calculation code for Section 4.5

# middleman

from sympy import Rational, symbols, diff, solve, init_printing, 1ln,simplify,plot
#Initial Settings

x111,x121,x112,x122,x21, x22, x31, x32

= symbols(’x111,x121,x112,x122,x21, x22, x31, x32’) #demand

pl= symbols(’pl’) # price of good 1 for market 1

p2= symbols(’p2’) # price of good 1 for market 2

11,12, 13 = symbols(’11,12, 13’) # lagrange multiplyers

ell,el2 = symbols(’ell,el2’) # initial endowment alocations of player 1

# utility functions

ul = Rational(l, 2) * 1n(x111+x112)+ Rational(l, 2) * 1n(x121+x122) # player 1
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u2 = Rational(8, 9) * 1n(x21) + Rational(l, 9) * 1n(x22) # player 2

u3 = Rational(l, 9) * 1n(x31) + Rational(8, 9) * 1n(x32) # player 3

# budget constrains

bcl2 = pl * x111 + x121 - pl * (3-ell) - (3-el2) # player 1 for market 1
bcl3 = p2 * x112 + x122 - p2 * ell - el2 # player 1 for market 2

bc2 = pl * x21 + x22 - pl * 3 - 3 # player 2
bc3 = p2 * x31 + x32 - p2 * 3 - 3 # player 3
#L1 = ul + 11 * bcl

# lagragian

L2 = u2 + 12 * bc2

L3 = u3 + 13 * bc3

# first order conditions
dx21 = diff (L2, x21)

dx22 = diff (L2, x22)
dx31 = diff (L3, x31)
dx32 = diff (L3, x32)

# solve for player 1 in the kinked budget constrain
solutionll = solve(bcl2.subs(x111,0),x121)
display(solutionll)

solutionl12 = solve(bcl13.subs(x122,0),x112)
display(solutionl2)

# Solve for x21, x22, and 12

solution2 = solve([dx21, dx22, bc2], [x21, x22, 12])
display(solution?2)

# Solve for x31, x32, and 13

solution3 = solve([dx31, dx32, bc3], [x31, x32, 13])
display(solution3)

# Substitute the solutions for the budget constraints
mrkt_eqll = 0+x21-3-(3-ell)

mrkt_eql2 = solutionl12[0]+x22-3-(3-e12)
mrkt_eq21 = solutionl1[0]+x31-3-ell
mrkt_eq22 = 0+x32-3-el2

# Solve market equilibirum
solll=solve(mrkt_eqll.subs(x21,solution2[0] [0]),p1)
display(solll)
soll12=solve(mrkt_eql2.subs(x22,solution2[0] [1]),p1)
display(soll2)
sol21=solve(mrkt_eq21l.subs(x31,solution3[0] [0]),p2)
display(sol21)
sol22=solve(mrkt_eq22.subs(x32,solution3[0] [1]),p2)
display(s0l22)

# utility functions satisfy the first order conditioms
ul_max=ul.subs([(x111,0), (x112,s0lution12[0]),
(x121,solution11[0]), (x122,0), (p1,s0111[0]), (p2,s0122[0])1)
u2_max=u2.subs ([(x21,so0lution2[0] [0]),
(x22,so0lution2[0] [1]1), (pl,s0111[0]), (p2,s0122[0]1)])
u3_max=u3.subs([(x31,so0lution3[0] [0]),
(x32,s0lution3[0] [1]), (p1,s0111[0]), (p2,50122[0]1)]1)
display(ul_max)

#display(ul_max.evalf())
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plot(ul_max.subs(el2,1),(el11,0,3))

plot(ul_max.subs(ell,2),(el12,0,3))

# maximize utility by initial endowments and solve for player 1

dfulel=diff (ul_max,ell)

dfule2=diff (ul_max,el2)

soll=solve([dfulel,dfule2], [ell,e12])

display(sol1[0] [0] .evalf())

display(sol1[0] [1].evalf())

display(solve([dfulel,dfule2], [ell,e12]))

display(ul_max.subs(ell,s011[0][0]) .subs(el2,s011[0][1]))
display(ul_max.subs(ell,s011[0] [0]) .subs(el2,s011[0] [1]).evalf())

# substitute equilibirum initial endowment for utility and solve for player 2
display(u2_max)

display(u2_max.subs(ell,s011[0] [0]).subs(el12,s011[0] [1]))
display(u2_max.subs(ell,s011[0] [0]) .subs(el12,s011[0] [1]) .evalf())

# substitute equilibirum initial endowment for utility and solve for player 3
display (u3_max)

display(u3_max.subs(ell,s011[0][0]) .subs(el2,s011[0] [1]))
display(u3_max.subs(ell,s011[0] [0]) .subs(el12,s011[0] [1]) .evalf())
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